SOC H.264 AVC 4k Video Decoder Datasheet

System-On-Chip (SOC) Technologies

1. Key Features

1. Profile: High profile
2. Resolution: 4k (3840x2160)
3. Frame Rate: up to 120fps
4. Chroma Format: 4:2:0 or 4:2:2
5. Precision: 8 or 10 bits
6. Input Stream: Transport or Elementary
7. Latency: 0.5ms

2. Product Overview

The SOC H.264 AVC 4k video decoder is a single chip solution that supports single or multi-stream H.264 4k (3840x2160) video decoding up to 120fps. The SOC 8k and 16k decoder IP cores are released as separated products.

SOC provides the versions of the H.264 4k video encoder IP core for FPGAs of both Xilinx, and Altera. SOC also supplies an all-in-one 4k decoder module based on this H.264 4k video decoder IP core. Refer to the Product Brief and Datasheet for SOC MPEG codec modules for details.

The SOC H.264 AVC 4k video decoder is implemented based on SOC’s proprietary single-clock driven all-hardware technology (without microprocessors or embedded software), which has significant advantages of high-speed (low latency), small footprint (low power), high video quality, and high resolution.

The SOC H.264 AVC 4k video decoder is at high-profile and backward compatible with main and simple profiles according to the MPEG standard. It decodes both 4:2:0 and 4:2:2 streams with automatic selection. The decoder is suited for both consumer products and high-end applications such as broadcast, digital cinema, and medical devices.

The SOC decoder series can be integrated with an audio decoder to provide an all-in-one decoding solution. SOC also integrates network modules, TCP/UDP-IP, Ethernet MACs, as well as the MPEG transport de-multiplexer into the design to produce full system-on-chip systems. Customized versions of these products are available on request.
3. The SOC H.264 AVC 4k Video Decoder Architecture

The SOC H.264 4k video decoder has the same architecture of HD/SD decoder. Fig. 1 is the block diagram of the SOC H.264 AVC video decoder. It is a self-contained FPGA IP core that can be either placed into a single FPGA or integrated with other logic blocks in the same FPGA for system-on-chip solutions.

All of the blocks in the design, shown in Fig. 1, are implemented in hardware without embedded processors or embedded software, which offers high speed, low logic resource consumption, and low power. Input to the decoder is standard H.264 elementary stream without bit rate limitation. The output of the decoder is the video stream for standard display devices with frames properly ordered. SOC also provides an MPEG transport decoder to allow the input to the decoder to be in the form of MPEG transport streams.

The decoder also automatically detects missing data, if any, and compensates for the missing blocks using the corresponding blocks in the neighboring frames to increase the overall video quality.

The SOC H.264 video decoder requires two external clock sources with one at 100MHz and the second at 27MHz. The decoder also requires an external DDR3 memory of minimum of 1GB for 4k resolution.

![Fig. 1 The SOC H.264 decoder architecture](image-url)
4. Technical Specifications

Conformance Standard:
H.264/AVC (ISO/IEC14496-10)

Profile:
- Simple Profile
- Main Profile, and
- High Profile.

Chroma Format:
- 4:2:0
- 4:2:2
- 4:4:4 (on request)

Precision:
- 8 bits
- 10 bits.

Inter Frames:
- I frame
- P frame
- B frame.

Frame Rates:
- 10fps, 24fps, 25fps, 29.97fps, 30fps
- 50fps, 59.95fps, 60fps, 120fps
- Higher frame rates are also available, on request

Input Data Rate:
There is no limitation on the data rate of the input streams, as long as it is H.264 compliant.

Latency:
The SOC H.264 video decoder has very low latency due to its hardware implementation. The decoding engine latency is 0.5ms from data in to data out. The decoder can buffer 1 complete frame before display, if needed, to compensate any jitters of the input stream, which is controllable through the API.

Power:
The power consumption is less than 2w for the core only.
5. Targeted FPGAs

The SOC H.264 4k video decoder IP core is customized for both Xilinx and Altera FPGAs, including:

- Kitex-7
- Zynq-7
- KintexUltrascale
- Arria-V
- Arria-10
- Stratix-IV
- Stratix-V

Logic Resources on Xilinx FPGAs:
The logic resources required on Xilinx FPGAs by the 4k@30/60/120 encoder IP core is listed in Table-1

<table>
<thead>
<tr>
<th>Resources type</th>
<th>4k@30 Resource Utilization</th>
<th>4k@60 Resource Utilization</th>
<th>4k@120 Resource Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUTs</td>
<td>52k</td>
<td>2X52k</td>
<td>4X52k</td>
</tr>
<tr>
<td>Logic cells</td>
<td>90k</td>
<td>2X90k</td>
<td>4X90k</td>
</tr>
<tr>
<td>B-RAM</td>
<td>3.5Mbits</td>
<td>2X3.5Mbits</td>
<td>4X3.5Mbits</td>
</tr>
<tr>
<td>DSPs</td>
<td>25</td>
<td>2X25</td>
<td>4X25</td>
</tr>
</tbody>
</table>

Table-1 Logic resource utilization of 4k encoder at the frame rate of 30, 60, or 120

Logic Resources on Altera FPGAs:
The logic resources required on Altera FPGAs by the 4k@30/60/120 encoder IP core is listed in Table-2

<table>
<thead>
<tr>
<th>Resources type</th>
<th>4k@30 Resource Utilization</th>
<th>4k@60 Resource Utilization</th>
<th>4k@120 Resource Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM</td>
<td>30k</td>
<td>2X30k</td>
<td>4X30k</td>
</tr>
<tr>
<td>B-RAM</td>
<td>3Mbits</td>
<td>2X3Mbits</td>
<td>4X3Mbits</td>
</tr>
<tr>
<td>DSPs</td>
<td>25</td>
<td>2X25</td>
<td>4X25</td>
</tr>
</tbody>
</table>

Table-2 Logic resource utilization of 4k encoder at the frame rate of 30, 60, or 120

FPGA Examples:
The following Table-3 shows the FPGA examples for 4k@30, 4k@60, and 4k@120 resolutions. Other FPGAs are also supported, as long as the logic resources and clock speed meet the requirement.

<table>
<thead>
<tr>
<th>Resolution@frame-rate</th>
<th>Xilinx FPGA Example</th>
<th>Altera FPGA Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k@30</td>
<td>Zynq-7 Z-7030</td>
<td>Arria-10 GX160</td>
</tr>
<tr>
<td>4k@60</td>
<td>Zynq-7 Z-7035</td>
<td>Arria-10 GX220</td>
</tr>
<tr>
<td>4k@120</td>
<td>Zynq-7 Z-7100</td>
<td>Arria-10 GX480</td>
</tr>
</tbody>
</table>

Table-3 Examples for Xilinx and Altera FPGAs
6. The H.264 4k Video Decoder Integration Sheet

When the 4k decoder is delivered in IP core format, it is a ready-to-use bit-stream core for FPGAs. SOC supports Xilinx FPGAs. Fig. 2 shows the inputs and outputs of the decoder core.

The H.264 4k video decoder IP core integration details are provided in a separate document under the title of “H.264 4k Video Decoder IP Core Integration Sheet”.

![Fig. 2 The inputs and outputs of the H.264 IP Core](image)

7. The H.264 4k Decoder Module

SOC supplies the H.264 4k decoder on a 2.7”x2.0” module (card), as shown in Fig. 3. The module provide complete function of 4k video/audio decoding. The module connects to the host product/PCB via a device-to-PCB connector, as shown in Fig. 4.

Refer to the Product Brief and Datasheet of SOC MPEG Codec Modules for technical details.

![Fig. 3 SOC MPEG Codec Module](image) ![Fig. 4. Device-to-PCB connectors](image)
8. The H.264 4k Decoder Chipset

SOC Technologies provides a series of CODEC chipsets, the SOC-Mcodec family, which can be dropped onto user PCBs as ASIC video encoders and decoders. The SOC-Mcodec family of chipsets support all MPEG standards, including H.264, H.265, and MPEG-2, and all industrial standard resolutions, including SD, 720, 1080, 4K, and 8K, with frame rates of up to 120 fps.

The SOC H.264 4K Decoder Chipset includes an FPGA and FLASH preconfigured with SOC's H.264 4k Encoder IP Core. It is an ASIC that receives raw video/audio and outputs an H.264 video stream with optional AAC/MP2/MP3 audio compression. It supports resolutions up 4K at 60 fps.

SOC CODEC Chipsets are fully pre-configured FPGA chips that are designed to function just like traditional ASIC chipsets, integrated onto user PCB by connecting the pins.

The Chipset I/O interfaces can be customized to virtually any customer specifications, making them the most flexible CODEC chipsets on the market. This is especially useful if your system demands non-standard I/O interfaces - let us tailor the interfaces to work in harmony with your system.

Unlike traditional ASICs, SOC's CODEC chipset firmware may be updated to change its functionality or I/O interfaces if needed.

The SOC CODEC Chipsets are built using SOC Technologies’ portfolio of ultra-high-performance CODEC and peripheral IP Cores. You can expect high quality, high speed, low latency, and low power-consumption.

With high volume productions of FPGAs, today’s FPGAs are fabricated using the most current silicon technologies that are used for computer CPUs, such as the new 10nm silicon class. This makes the FPGA based ASICs away ahead of the traditional MPEG codec ASICs, especially in power consumption, speed, and cost.
9. Related Documents

1. Integration Sheet – Decoder IP Cores
2. API Manual – H.264 Decoder IP Core
3. Pin Assignment Sheet – Decoder Modules
4. Pin Assignment Sheet – Decoder Chipsets

10. Technical Support

SOC provides technical support for all its products, which include documentation, web site based, and telephone based support. Additional support services, such as on-site training services, can be subscribed from SOC as a service contract.

11. IP core upgrading

An upgrade is usually a part of the technical support contract signed individually. Upgrade programs can be subscribed after the technical support period. On-line automatic upgrading can also be arranged if desirable.

12. Ordering Information

The SOC H.264 4k video/audio decoder IP cores are available for licensing or a combination of one-time fee plus reduced royalty payments.

Please contact SOC sales by telephone +1 519 880-8609 or e-mail: sales@soctechnologies.com
13. Document Revisions

<table>
<thead>
<tr>
<th>Version #</th>
<th>Revision Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1.0</td>
<td>2014/02/15</td>
<td>First release</td>
</tr>
<tr>
<td>V.1.1</td>
<td>2014/08/10</td>
<td></td>
</tr>
<tr>
<td>V.2.0</td>
<td>2015/03/15</td>
<td>Major revision</td>
</tr>
<tr>
<td>V.2.1</td>
<td>2016/05/15</td>
<td></td>
</tr>
</tbody>
</table>